Pacific Regional Integrated Data Enterprise (PRIDE)

A Tsunami Focused Data Sharing Framework

Wave and Water Level Data and Visualization through Web Services

Uday S. Kari and John J. Marra
NOAA Integrated Data and Environmental Applications (IDEA) Center
Stuart A. Weinstein
NOAA Pacific Tsunami Warning Center
Agenda

• Motivations
• Timeline To-Date
• Architecture – Sea Level Station XSD
• Implementation – Prototype Web Svc
• Implementation – Tide Tool Data Set
• Accomplishments
• Future Activities Being Considered
• Related Activities – HI-RISC
• Discussion
Motivations

• Upgrade Data Sources to Data Services
• Loosely Coupled Data Environments
• Dynamic (Real Time) Interactions
• Heterogeneous Platforms
• No “Centralized” Control / Data Node
Timeline

- Oct 2005 – PRIDE FY05 Web Services Prototype
- Dec 2005 – Workshop I
- Mar 2006 – IODE/ODINAFRICA, Oostende
- May 2006 – IOTWC Working Group, Melbourne
- Oct 2006 – Formalize Tsunami Bulletins
- Nov 2006 – Expose Tide Tool Dataset
- Dec 2006 – Update Schema Definition
 Transform to XML/KML (enable Google)
- Jan 2007 – Presentation Layer Updates
 Expanded dataset to global
- Feb 2007 - Backend Automation (Push/Pull)
- Apr 2007 – Production, Maintenance
- Oct 2007 – GIS Ingest (enable HI-RISC GIS Client)
Objective

Develop a *distributed* metadata system describing sea level stations, starting with pilot activities in a regional framework, focusing on tsunami detection and warning systems being developed by various agencies.

- UNESCO document [IOC/INF-1226](https://www.unesco.org) of April 2006
NOAA Integrated Data and Environmental Applications (IDEA) Center

Project Goals

- **Expose Sea Level Station MetaData**
 - Data schema
 - Semantic (Plain English)
 - Formal XML Schema (XSD)

- **Harvest Tide Gauge Data**
 - Remote Procedures Specification
 - Web Service Desc Language (WSDL)
 - Prototype Implementation
Tactical Issues

• Biggest hold-up: lack of real data and demonstrable clients.

• Start with exposing, a data set that “we” already have - namely the metadata used by the PTWC Tide Tool.

• Demonstrate the value of the XML based service enabling a variety of clients.
NOAA Integrated Data and Environmental Applications (IDEA) Center

CONOPS

Service Oriented Architecture

Data Sources
- provider

- station
- systems
- data
- products

Web Service
- integrator/aggregator

Web Service API

Clients
- user

GIS

- station managers
- warning system managers
- emergency managers
NOAA Integrated Data and Environmental Applications (IDEA) Center

Tide Tool Metadata

- Station ID, Name, Location (Lat, Long)
- Data Communication Platform ID, Header
- Sensor Transmission Rate, Sample Interval
- Data Units, Format, Keys, Flags
- Operator (Organization Acronym)

IDEA CENTER

- Operational Status
- Country Codes
- Data URL

Additional Fields

PTWC

Data
NOAA Integrated Data and Environmental Applications (IDEA) Center

Tools

Station Metadata

Collates

Data Flow 1 of 3

(PTWC)

PUSH

OR

PULL

UPLOAD

EMAIL (*)

put

get

FTP

HTTP (*)

To Web Service
Data Flow 2 of 3

From Data Provider

Station Metadata

Additional Data

Parser

stations.xml

Other Adapters
Data Flow 3 of 3

Stations.xml

- Raw
 - (Browser)
 - (XML Editors)
- Transformers
 - (KML)
 - (HTML)
 - (XSL)
- Digestors
 - (GIS Ingest)
 - (Custom Objects)
- RPC
 - (Various Apps, Extensions, Integration)
• Client #1: Google Earth

• Client #2: GIS Client
NEXT STEPS

Initiate contact with individual sea level station operators in the Pacific and explore opportunities to stand-up operator-based web services.

Refine the XML-based sea level station metadata schema to include additional metadata elements and, as such, be applicable to other marine hazard warning systems.

Facilitate creation of a web-enabled client-application that harvests and displays sea level station metadata and other relevant information and that, at a minimum, could be used by tsunami warning system managers.

Continue communication and coordination with interested parties, building upon the discussions described in the UNESCO document IOC/INF-1226 of April 2006.

See Paper for further detail